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This paper presents an experimental study of AISI 52100 hardened steel turned with wiper mixed ceramic
(Al2O3+TiC) inserts coated with TiN, using Multivariate Robust Parameter Design (MRPD). The main charac-
teristic of this new optimization approach consists of considering both controllable (xi) and noise (zi) vari-
ables of the hard turning process to find out the parameter levels which minimize the distance of each
response (yi) from its respective targets (Ti) while keeps each variance caused by the noise variables as
low as possible. Using a crossed array, a response surface design formed by cutting speed (Vc), feed rate
(f) and depth of cut (d) is submitted to the influence of four scenarios built with an 22 full factorial design
of two noise factors — workpiece hardness decreasing (Z1) and tool flank wear (Z2). This experimental ar-
rangement allows the generating of mean, variance and mean square error (MSE) of five surface roughness
parameters (Ra, Rz, Ry, Rt and Rq). As these responses are highly correlated, to extract and employ this infor-
mation, Principal Component Analysis (PCA) was used. Adopting the Multivariate Mean Square Error
(MMSE) as optimization criteria, a robust solution could be found. Theoretical and experimental results
were convergent and confirmed. With Vc=199.9 m/min, f=0.191 mm/rev and d=0.190 mm, the five sur-
face roughness parameters and respective variances were minimal, with better results than those obtained
with individual optimization.
ennessee.edu (P.P. Balestrassi).
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1. Introduction

Considerable attention has been given recently to the understanding
of hardened steel machining [1–17]. The hard turning process shows
several potential benefits over traditional grinding –mainly considering
its efficiency in the reduction of processing time consumed in each op-
eration – such as, production costs [6], setup time [3,4], coolant elimina-
tion and reduced energy consumption [2], improvement of material
properties, and capacity to promote low values for surface finish while
removing much more workpiece material in a single cut rather than a
lengthy grinding operation [4]. These benefits, however, can only be
achieved with adequate values for the process parameters as also the
correct choice of tool material and geometry [4].

Related to the contribution of the tool geometry for the improve-
ment of hard turning process, several works present the use of
wiper inserts as a machining tool [2,4,5]. This kind of insert allows
the utilization of a much higher feed rate on the turning process
when compared with traditional tools, due to its three radii geometry
[4], with two of them being disposed adjacent to the nose radius with
little or no clearance angle. This characteristic improves the finishing
by the greater burnishing of the machined surface. With this
modification in the tool nose geometry it is possible to double the
feed rate, increasing the productivity and also keeping the surface
roughness as low as possible. Gaitonde et al. [2], studying the effects
of cutting parameters in a hard turning operation, confirmed that
wiper mixed ceramic inserts presented better surface roughness and
tool wear performance when compared with traditional turning op-
eration of high chromium AISI D2 cold work tool steel. Also in the
AISI D2 steels with 60 HRC, Ozel et al. [4] indicate that the average
surface roughness (Ra) is attainable with wiper tools, with values
around 0.20 μm.

The potential benefits promoted by hard turning for surface quality
and the increasing of productivity rate depend intrinsically on an op-
timal setup for the process parameters such as cutting speed (Vc),
feed rate (f) and depth of cut (d). These parameters are directly re-
sponsible for many of machining predictable properties like tool
wear, tool life, surface finishing and amount of material removed [4].
In this sense, trying to achieve a better hard turning process compre-
hension, several works has been done recently [1–24]. Some works
have studied the effect of cutting conditions (Vc, f, d) [1–4,6,7], the in-
fluence of workpiece hardness [1], the tool geometry on surface
roughness and cutting forces [1,4,10,11], the effects of cutting fluids
[12–14], the wear and tribochemical mechanisms [8], the tool flank
wear and its influence to the geometric error as the influence of
solid lubricants [17], the surface integrity (surface roughness, residual
stress and thermal damage layer) [18], the cooling effects [19] and the
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accuracy and thermal damage [20,21]. Most of these works attempt to
establish a relationship between process output properties (tool life,
surface roughness, cutting forces) and inputs variables (cutting
speed, feed rate and depth of cut).

To model the machining properties as function of hard turning pro-
cess parameters, many researchers have used Response Surface Meth-
odology (RSM) [1,3,6,7,14,21–28]. In this methodology, the effect of
cutting parameters onmachining outputs are obtained using a set of ex-
periments capable of generate an appropriate dataset for efficient statis-
tical analysis, which in turn produces valid and objective models [29].
These models can be used in optimization, simulation or prediction of
turning process behavior, mainly within the experimental range
[6,7,29]. Bouacha et al. [1] used RSM to build quadratic models for sur-
face roughness and cutting forces in the study of AISI 52100 hardened
bearing steel. After the modeling task, desirability function was used
as a multiresponse optimization method. Mandal et al. [3] employed
RSM to study flank wear of Zirconia Toughened Alumina and used de-
sirability function to minimize tool wear as a function of cutting speed
levels, feed rate and depth of cut. Benga and Abrão [26] have studied
tool life and the surface finishing of hardened 100Cr6 bearing steel
obtained with PCBN and ceramic inserts using RSM. Singh and Rao
[10] conducted an experimental investigation for the effects of cutting
conditions and tool geometry on the surface roughness of the bearing
steel (AISI 52100) with mixed ceramic inserts made of aluminum
oxide and titanium carbonitride (SNGA), having different nose radius
and different effective rake angles. Sahin and Motorcu [22] used RSM
to model surface roughness (Ra, Rz and Rmax) in the turning of AISI
1050 hardened steels by cubic boron nitride (CBN) cutting tools. Al-
Ahmari [24] built empirical models for tool life, surface roughness and
cutting force in a hard turning of austenitic AISI 302.

Most of the literature on machining process presents some kind of
multiresponse modeling and optimization. In a great number of pa-
pers, researchers prefer a routine based on the composite desirability
function [30] to find optimum values of machining parameters with
respect to its targets when more than one characteristic is needed
[1,3,14]. Iqbal et al. [14], for example, used the desirability approach
to simultaneously maximize tool life (y1) and to minimize average
surface roughness measured along (y2) and across (y3) (where y2
and y3 were feed directions in the milling of AISI D2 and in the
X210 Cr12 steels). To model the effects of cutting parameters applied
to the finish of hard-milling process with MQL (Minimum Quantity of
Lubricant), researchers have used a D-optimal response surface de-
sign. The desirability method, however, present large limitations in
terms of correlation influences over the optimization [37].

Besides, all aforementioned works are related only with the use of
RSM for the modeling of mean values of the machining properties,
neglecting in this case effect that noise factors may cause in the perfor-
mance of the machining process. This effect can be mathematically
expressed as of a variance equation. Assuming that noise factors can be
controlled in an experimental environment, the determination of the
level of controllable factors that makes the processes less sensitive to
the variation caused by the noise ones can be reached through an optimi-
zation approach called Robust Parameter Design (RPD) [31–34]. So, con-
sidering that mean value μ̂

� �
of machining outputs must reach its target

(θ) while variance (σ̂2) is simultaneously reduced, a Dual Response Sur-
face (DRS) is generally considered to attain the proposed goals in each
quality characteristic. This task is accomplished by building a response
surface for mean, variance or alternatively by its combination, called
Mean Square Error (MSE). According to Lin and Tu [33] and Vining and
Myers [35] the minimization of MSE can be considered an efficient opti-
mization strategy for RPD. In mathematical terms, MSE combines re-
sponse surface for μ̂ (mean) and σ̂2 (variance) related to θ (target) as:

MSE = μ̂−θ
� �2

+ σ̂2
: ð1Þ
Alternatively, supposing that MSE can be calculated within exper-
imental results for each experimental run in the response surface de-
sign, one can directly establish a model for MSE. Eq. (1) represents
the mean square error of a unique output. By considering that the
hardened steel machining processes have many characteristics to be
improved than the dual optimization described by Eq. (1) it is not
enough to promote solutions to the entire set of characteristics.
Extending the MSE criterion to optimize multiple responses, Köksoy
[34] and Köksoy and Yalcinoz [36] have proposed the agglutination
of mean square error of each response using a weighted sum (or
the most important MSE response) as objective function while the
remaining were kept as constraints. Although efficient, this method
ignores the correlation that multiple means and variances can exhibit.
The presence of correlation can cause model's instability, overfitting
of prediction equations and an inaccuracy on regression coefficients.
This means that regression equations are not adequate to represent
a global objective function without considering the variance–covari-
ance structure among multiple responses [37–39]. Some optimization
approaches concerned with correlation among multiple responses
were recently established [6,7,37–46], but they were not capable of
treat dual response surface (DRS) problems.

Therefore, as most part of machining processes presents large sets
of correlated responses [46] that are generally influenced by noise
variables, in this paper we will propose a multiobjective optimization
method for correlated mean square error functions based on the con-
cept of multivariate mean square error (MMSE) established by Paiva
et al. [7]. Using a crossed array, a response surface design formed by
cutting speed (Vc), feed rate (f) and depth of cut (d) is submitted to
the influence of several scenarios built with an full factorial design
of two noise factors — workpiece hardness (Z1) and tool flank wear
(Z2). This experimental arrangement allows the generation of mean,
variance and mean square error (MSE) for five surface roughness pa-
rameters (Ra, Rz, Ry, Rt and Rq). As these responses are highly corre-
lated, this information can be extracted using Principal Component
Analysis (PCA) and will integrate the MMSE function. This approach
will be called herein Multivariate Robust Parameter Design (MRPD).
The next section describes how this approach can be developed by
the practitioners

2. Multivariate Robust Parameter Design

A multiobjective optimization problem, also considering inequali-
ty constraints, can be stated as Eq. (2):

Minimize f1 xð Þ; f2 xð Þ;…; fp xð Þ
Subject to : gj xð Þ≤0; j = 1;2;…;m:

ð2Þ

Suppose that f1(x), f2(x),…, fp(x) are correlated with values writ-
ten in terms of a random vector YT=[Y1,Y2,…,Yp]. Assuming that Σ
is the variance–covariance matrix associated to this vector then Σ
can be factorized in pairs of eigenvalues–eigenvectors (λi,ei),…≥
(λp,ep), where λ1≥λ2≥…≥λp≥0, such as the ith uncorrelated linear
combination may be stated as PCi=ei

TY=e1iY1+e2iY2+…+epiYp
with i=1,2,…,p [47]. This uncorrelated linear combination is called
principal component score and can be obtained using PCA [47]. This
algorithm is available in many statistical packages in a lager deal of
user friendly displays. In the Minitab® 15.0, for example, the principal
component scores can be directly stored in a worksheet column.

Relating these concepts to the MRPD approach aforementioned
discussed, let's suppose that the multiple calculated MSEij dataset
can be replaced by this uncorrelated linear combination. Then, a mul-
tiobjective function can be written aggregating the several responses
into a unique index while keeps its variance–covariance structure and
the individual deviation from each target. At this point, we will use
the MMSE concept [7].



Fig. 1. Hard turning process with wiper ceramic tool.

Table 1
Inner array: control factors and respective levels.

Control Factors Symbol Levels

Coded Units −1.682 −1 0 1 1.682

Cutting speed (m/min) Vc 186.4 200 220 240 253.6
Feed rate (mm/rev) f 0.132 0.20 0.30 0.40 0.468
Depth of cut (mm) d 0.099 0.150 0.225 0.300 0.351

Table 2
Outer array: noise factors and respective levels.

Noise factor Symbol −1 +1

Workpiece hardness (HRC) Z1 40 50
Tool flank wear VBmax (mm) Z2 0 0.30
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Multivariate Mean Square Error (MMSE) is a multivariate dual re-
sponse surface criterion developed by replacing the estimated mean ŷ
by an estimated principal component score regression (PCi) and the
estimated variance σ̂2 by the respective eigenvalue λi [7]. Taking
ζPCi

as the target for the i-th principal component, a multivariate
mean square error formulation can be defined as:

MMSEi = PCi− ζPCi
� �2

+ λi: ð3Þ

In Eq. (3) PCi is the fitted second-order polynomial for principal
component score, ζPCi

is the target value of the i-th principal component
that must keep a straightforward relation with the targets of the origi-
nal data set. This relationship may be established using Eq. (4) such as:

ζPCi = eTi Z Yp jζYp
� �h i

= ∑
p

i=1
∑
q

j=1
eij Z Yp jζYp

� �h i
i = 1;2;…; p;

j = 1;2;…; q:

ð4Þ

In Eq. (4) ei are the eigenvectors associated to the i-th principal
component and ζYp

represents the target for each of the p original re-
sponses. With this transformation, it can be established a coherent
value for the target of the i-th principal component, that is compatible
with the targets of the original problem.

Suppose now that Yp=MSEp=(μp−θ)2+σp
2. Then, if more than

one principal component will be necessary, using the MMSE functions
whose eigenvalues are equal or greater than the unity, we may be
write a multiobjective problem in the following form:

Minimize MMSET = ∏
k

i=1
MMSEi jλi≥1ð Þ

" # 1
k

� �

= ∏
k

i=1
PCi−ζPCi
� �2

+ λi jλi≥1
� �( ) 1

k

� �

i = 1;2;…; k; k≤p:

ð5Þ

Subject to : xTx≤ρ2 ð6Þ

ĝi xð Þ≤0: ð7Þ

With : ζPCi
= e1i Z MSE1 jζMSE1

� �h i
+ e2i Z MSE2 jζMSE2

� �h i

+ ⋯ + epi Z MSEp jζMSEp

� �h i
ð8Þ

PCi = b0i + ∇f xð ÞT
h i

i
+

1
2
xT ∇2f xð Þ
h i

x
� 	

i
i = 1;2;…; p:

ð9Þ

MSEp = ŷp−θp
� �2

+ σ̂p i = 1;2;…; p: ð10Þ

To the better understanding, the practitioner may use the follow-
ing procedure to replicate the proposed methodology, explored step
by step in the next session:

2.1. Procedure

Step 1. Experimental design

Calculate mean and variance for each surface roughness metric
ŷi
� �

obtained with a crossed array;
Step 2. Modeling of responses

Establish equations for ŷi
� �

using experimental and calculated

data and a full quadratic model;

Step 3. Constrained optimization of Y

Establish surface roughness targets (θi), using the constrained
minimization of each surface equation individually;

Step 4. Modeling of MSEs

With the targets of step 3, calculate each MSEi, such as MSEij =

ŷij−θi
� �2

+ σ̂2
ij and build a full quadratic model for each MSEi;

Step 5. Constrained optimization of MSEs

Establish targets for MSEi (θi*), using the constrained minimization
for each adjusted response surface equation individually;

Step 6. Principal Component Analysis

Conduct the Principal Component Analysis (PCA) using the corre-
lation matrix of MSEi, storing the PC-Scores (whose explained vari-
ance is at least 80%) and respective eigenvalues and eigenvectors;

Step 7. Modeling of PC-scores

Build full quadratic models for the PC-scores of each component
that must be kept in the analysis.

image of Fig.�1


Table 3
Response surface crossed array for Ra.

−1 1 −1 1 Z1 Outer array: noise factors

−1 −1 1 1 Z2

Inner array: control factors Replicates Properties

Vc f d Ra1 Ra2 Ra3 Ra4 Mean Variance MSE

−1.000 −1.000 −1.000 0.225 0.153 0.288 0.243 0.227 0.003194 0.003493
1.000 −1.000 −1.000 0.233 0.219 0.383 0.292 0.281 0.00553 0.010637
−1.000 1.000 −1.000 0.485 0.388 0.432 0.320 0.406 0.004879 0.043312
1.000 1.000 −1.000 0.463 0.382 0.465 0.236 0.386 0.011554 0.042618
−1.000 −1.000 1.000 0.252 0.177 0.339 0.252 0.255 0.004414 0.00642
1.000 −1.000 1.000 0.252 0.173 0.260 0.260 0.236 0.001775 0.002464
−1.000 1.000 1.000 0.526 0.357 0.408 0.327 0.404 0.007692 0.045393
1.000 1.000 1.000 0.445 0.412 0.383 0.303 0.386 0.003662 0.034506
−1.682 0.000 0.000 0.338 0.373 0.289 0.290 0.322 0.001631 0.01424
1.682 0.000 0.000 0.369 0.358 0.256 0.266 0.312 0.003567 0.01403
0.000 −1.682 0.000 0.167 0.095 0.365 0.219 0.211 0.013068 0.01307
0.000 1.682 0.000 0.508 0.534 0.445 0.396 0.471 0.003903 0.071937
0.000 0.000 −1.682 0.378 0.349 0.283 0.311 0.330 0.001749 0.016249
0.000 0.000 1.682 0.413 0.416 0.259 0.318 0.351 0.005847 0.025799
0.000 0.000 0.000 0.348 0.298 0.355 0.285 0.321 0.001222 0.013645
0.000 0.000 0.000 0.378 0.294 0.296 0.273 0.310 0.002138 0.012138
0.000 0.000 0.000 0.321 0.308 0.293 0.267 0.297 0.000543 0.008163
0.000 0.000 0.000 0.339 0.290 0.273 0.263 0.291 0.001159 0.007726
0.000 0.000 0.000 0.343 0.322 0.306 0.229 0.300 0.002466 0.010566
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Step 8. Constrained optimization of PC-scores

Establish the targets for the PC scores using ζPCi = ∑
p

i=1
∑
q

j=1eij Z MSEp jζYp

 �� 

;

Step 9. Generalized Reduced Gradient

Using the so called Generalized Reduced Gradient (GRG) algo-

rithm, minimize ∏
k

i=1
PCi−ζPCi

 �2 + λi jλi≥1
h i( ) 1

k

� �
, using as con-

straints the experimental region, non-negative variances and other
constraint gi(x) that the practitioner judges to be necessary, as Mate-
rial Removal Rate (MRR), for example.
3. A follow along experiment

To accomplish with the goals of this paper, dry turning tests of the
AISI 52100 steel, (1.03% C; 0.23% Si; 0.35% Mn; 1.40% Cr; 0.04% Mo;
0.11% Ni; 0.001% S; 0.01%) were conducted on a CNC lathe with max-
imum rotational speed of 4000 rpm and power of 5.5 kW and using
Wiper mixed ceramic (Al2O3+TiC) inserts (ISO code CNGA 120408
Fig. 2. Tool wear (noi
S01525WH) coated with a very thin layer of titanium nitride (TiN)
(Sandvik-Coromant GC 6050). The workpieces used in the turning
process were made with dimensions of Ø 49 mm×50 mm. All of
them were previously quenched and tempered. After this heat treat-
ment, their hardness was between 49 and 52 HRC, up to a depth of
3 mm below the surface. The tool holder used in the experiments pre-
sented a negative geometry with ISO code DCLNL 1616H12 and enter-
ing angle χr=95°. Fig. 1 represents the turning process of AISI 52100
used in this experimental study.

Step 1. Experimental design

Adopting this experimental condition, the workpieces were ma-
chined using the range of parameters as defined in Table 1.

A sequential set of experimental runs was established using a Cen-
tral Composite Design (CCD) built according to the design shown in
Table 1. To study the influence of two noise factors (Z1: workpiece
hardness and Z2: tool flank wear) as showed in Table 2, each experi-
ment with controllable factors in the CCDwere executed in a different
scenario. These scenarios, which characterize the outer array, were
designed according to a 22 full factorial design as shown in Table 3.
The first experimental condition of outer array was carried out with
se factor levels).
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Table 4
Surface roughness means and variances.

Run Ra Rz Rt Ry Rq Var1 Var2 Var3 Var4 Var5

1 0.227 1.254 1.455 1.406 0.278 0.00319 0.08517 0.14810 0.12287 0.00461
2 0.281 1.446 1.641 1.595 0.340 0.00553 0.13040 0.27502 0.23783 0.00784
3 0.406 2.306 3.131 3.077 0.553 0.00488 0.28340 1.01157 1.06995 0.01258
4 0.386 2.273 2.987 2.924 0.535 0.01155 0.71028 1.55357 1.52239 0.03301
5 0.255 1.336 1.557 1.530 0.312 0.00441 0.08466 0.21176 0.20534 0.00529
6 0.236 1.396 1.667 1.639 0.295 0.00177 0.09067 0.26055 0.27348 0.00278
7 0.404 2.044 2.657 2.539 0.523 0.00769 0.12102 0.28317 0.30485 0.01382
8 0.386 2.008 2.623 2.538 0.503 0.00366 0.07121 0.12672 0.12148 0.00652
9 0.322 1.744 2.034 1.989 0.412 0.00163 0.02488 0.02585 0.03769 0.00262
10 0.312 1.802 2.140 2.013 0.405 0.00357 0.04420 0.05074 0.04230 0.00511
11 0.211 1.378 1.685 1.597 0.270 0.01307 0.50613 0.74832 0.66784 0.02167
12 0.471 2.498 3.553 3.482 0.629 0.00390 0.09345 0.39983 0.43979 0.00479
13 0.330 1.835 2.148 2.118 0.417 0.00175 0.03747 0.02465 0.02915 0.00246
14 0.351 1.854 2.254 2.177 0.438 0.00585 0.09854 0.11829 0.11222 0.00776
15 0.321 2.142 2.644 2.591 0.434 0.00122 0.47660 1.42732 1.28338 0.00500
16 0.310 1.785 2.212 2.159 0.397 0.00214 0.04715 0.10425 0.10190 0.00346
17 0.297 1.727 1.919 1.906 0.433 0.00054 0.06307 0.09264 0.08931 0.01331
18 0.291 1.700 2.027 1.965 0.373 0.00116 0.04538 0.08940 0.07843 0.00254
19 0.300 1.759 2.163 2.102 0.389 0.00247 0.09263 0.23882 0.21077 0.00508
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reduced diameters, obtained after several turning passes. In this con-
dition, the material hardness decreases significantly, achieving a
hardness of 40 HRC approximately [1]. The workpieces were, then,
turned with a new tool edge (VBmax=0.00 mm).

The second noise condition was carried out turning the full piece
diameter with a new wiper tool edge (Fig. 2), with surface roughness
parameters measured just after one pass. The remaining noise condi-
tions were conducted using reduced and full piece diameters with
worn tool edge (Fig. 2). Tool flank wear measurements (VBmax)
were measured with an optical microscope (magnification 40×).
These four noise conditions were established to simulate the general
phenomena that occur when the practitioners carry out any turning
operation, reproducing, in some sense, the decreasing of the hardness
with the simultaneous tool edge wear. Obviously, in these conditions,
the surface roughness value will suffer some kind of variation, inde-
pendently of the control setup. So, the main objective of robust pa-
rameter design is to find out the control parameters setup capable
of achieving a reduced surface roughness with minimal variance.
The following surface roughness parameters were assessed using a
Mitutoyo portable roughness meter model Surftest SJ 201 fixed to a
cut-off length of 0.25 mm, arithmetic average surface roughness
(Ra), maximum surface roughness (RY), root mean square roughness
(Rq), ten point height (Rz) and maximum peak to valley (Rt).
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Fig. 3. Noise influence over expe
Using a Central Composite Design (CCD) as a response surface de-
sign, nineteen runs with four center points and axial distance of
ρ=1.633) were carried out measuring the surface roughness three
times at four positions in the workpiece middle. With these results,
mean and variance were calculated according to step 1 of our propos-
al (Tables 3 and 4).

The mean and variances values of these measurements are repre-
sented in Table 4.

According to the time series of Fig. 3, the simultaneous influence
of the tool flank wear and the workpiece hardness decreasing is
very large. It can be observed that the roughness (Ra and Rq) are ex-
tremely sensitive to changes in the noise conditions, causing instabil-
ity in the process performance. This oscillation, expressed in terms of
a non constant variance time series, causes productivity and capabil-
ity losses due to the large total variance perceived. So, the surface
roughness obtained with a new tool edge working over a hard mate-
rial is an unrealistic scenario for decision making process, and repre-
sents a process performance valid only for the first passes.

Otherwise, the lower surface roughness obtained with worn tool
edge it is not also a good reference, because in this condition the
tool life is near to its end. Since the noise effect comes from uncon-
trollable factors, the robust parameter strategy is based on the levels
findings of the controllable parameters (cutting speed, feed rate and
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rimental runs for Ra and Rq.
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Fig. 4. Contour plots for Ra (coded units).

Table 5
Regression coefficients and fits.

Coef. Ra Rz Rt Ry Rq

Constant 0.3044 1.8265 2.1963 2.1476 0.4055
Vc −0.0014 0.0204 0.0218 0.0136 −0.0005
f 0.0746 0.3722 0.6018 0.5914 0.1092
d 0.0011 −0.0338 −0.0390 −0.0480 −0.0028
Vc2 0.0021 −0.0380 −0.0575 −0.0675 −0.0015
f2 0.0106 0.0203 0.1305 0.1229 0.0131
d2 0.0105 −0.0128 −0.0171 −0.0157 0.0051
Vc×f −0.0092 −0.0401 −0.0593 −0.0566 −0.0102
Vc×d −0.0089 −0.0170 0.0042 0.0091 −0.0101
f×d 0.0019 −0.0698 −0.1208 −0.1364 −0.0064
S 0.0151 0.1464 0.2133 0.2022 0.0238
R-Sq(adj) 94.98% 82.39% 86.01% 87.02% 94.10%

1 — Bold values represent the significant terms in the models (P-Value b5%).
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depth of cut, for example) which turn the performance less sensible
to the variations caused by tool wear and workpiece hardness de-
creasing. Therefore, the main objective of MRPD approach is to mini-
mize the distance of the responses performance from their targets
while keeping the variances as lower as possible. This is the concept
of robustness.

Step 2. Modeling of responses

With the experimental data, full quadratic models were consid-
ered for each surface roughness parameter, as suggested in step 2.
Figs. 4 and 5 represent these models for Ra and Rq response surfaces.
Table 5 presents the coefficients and the R-Sq (adj.) for each
equation.

As can be observed in Table 5, feed rate is the most important fac-
tor to explain the average behavior of surface roughness. Although
the remaining terms are not significant, they were kept in the
model because their exclusion did not imply in prediction variance
reduction (S term).

Step 3. Constrained optimization of Y

Considering then the full quadratic models ŷi, a nonlinear optimi-
zation system described by the Eqs. (11) and (12) can be implemen-
ted using the GRG Solver® routine available in the Excel package.
After setting up the problem, the Solver® optimization parameters
were chosen considering a precision of 10−6, 100 iterations, a
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Fig. 5. Response surface
quadratic estimative, forwards derivatives and the Newton's method
as a line search option.

Minimize ŷi ð11Þ

Subject to : xTx≤ ρ2

σ̂2
i ≥0:001:

ð12Þ
Step 4. Modeling of MSEs

The constrained minimum will be the target (θi) to calculate each

MSEi, such as MSEij = ŷij− θi
� �2

+ σ̂2
ij . These values are shown in

Table 6.
According to the procedure established in the step 4, we employed

the Ordinary Least Squares (OLS) algorithm to obtain the coefficients
of a full quadratic model for MSEi. These results are presented in
Table 7 and Fig. 6.

Step 5. Constrained optimization of MSEs

The targets for each value ofMSEi (θi*) can be obtained with a con-
strainedminimization described by Eqs. (13) and (14). The results are
shown in the Table 8. In these equations, each MSEi is minimized
under the spherical constraint (Eq. 13) and under the nonnegative
constraint for mean square error. These targets are necessary in the
multivariate approach.

Minimize MSEi ð13Þ
Subject to : xTx≤ ρ2

MSEj ≥0:001 i≠ j:
ð14Þ
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Table 6
Mean square error for each response and first principal component score.

Run MSE1 MSE2 MSE3 MSE4 MSE5 PC1 PC2

1 0.0035 0.0871 0.1493 0.1242 0.0054 −2.0267 0.1235
2 0.0106 0.1860 0.3241 0.2884 0.0159 −1.5600 −0.0974
3 0.0433 1.4838 3.9392 3.9827 0.1043 3.4790 0.3475
4 0.0426 1.8396 4.0093 3.9359 0.1140 3.8627 0.5421
5 0.0064 0.1006 0.2306 0.2308 0.0092 −1.8479 0.0290
6 0.0025 0.1251 0.3217 0.3460 0.0048 −1.9056 0.2813
7 0.0454 0.8172 1.8130 1.6713 0.0882 1.4446 −1.0186
8 0.0345 0.7072 1.5737 1.4855 0.0705 0.7750 −0.6133
9 0.0142 0.3100 0.4025 0.4209 0.0289 −1.1672 −0.2256
10 0.0140 0.3945 0.5691 0.4562 0.0291 −1.0400 −0.1132
11 0.0131 0.5342 0.8183 0.7195 0.0221 −0.8690 0.2092
12 0.0719 1.7527 4.9483 4.9007 0.1482 5.4441 −0.5302
13 0.0162 0.4276 0.5551 0.5891 0.0302 −0.9117 −0.1555
14 0.0258 0.5135 0.8138 0.7639 0.0429 −0.3456 −0.4761
15 0.0136 1.3454 2.9249 2.7738 0.0388 1.2651 1.5200
16 0.0121 0.3778 0.7313 0.7244 0.0251 −1.0087 0.0777
17 0.0082 0.3302 0.3414 0.3771 0.0467 −1.1295 −0.1974
18 0.0077 0.2859 0.4574 0.4320 0.0177 −1.4427 0.1241
19 0.0106 0.3944 0.7901 0.7464 0.0243 −1.0161 0.1730

Mean 0.0209 0.6323 1.3533 1.3141 0.0456 0.0000 0.0000
S. D. 0.0184 0.5568 1.4812 1.4676 0.0406 2.1614 0.5256
Z −1.0277 −0.9631 −0.9130 −0.8948 −1.0474 – –

Targets 0.0020 0.0959 0.0010 0.0010 0.0031 −2.1652 0.1502

Table 7
Regression coefficients and fits.

Coef. MSE1 MSE2 MSE3 MSE4 MSE5 PC1(MSE) PC2(MSE)

Constant 0.0106 0.5465 1.0422 1.0037 0.0305 −0.6679 0.3318
Vc −0.0006 0.0375 0.0276 0.0078 −0.0001 0.0247 0.0601
f 0.0177 0.4685 1.2635 1.2534 0.0406 2.0150 −0.1700
d 0.0004 −0.1246 −0.2964 −0.3151 −0.0033 −0.3176 −0.2033
Vc2 0.0006 −0.0674 −0.1617 −0.1636 −0.0005 −0.1459 −0.1377
f2 0.0106 0.2123 0.6860 0.6749 0.0193 1.0531 −0.1345
d2 0.0031 −0.0256 −0.0915 −0.0794 0.0022 0.0221 −0.1894
Vc×f −0.0018 0.0153 −0.0544 −0.0640 −0.0018 −0.0869 0.0710
Vc×d −0.0027 −0.0675 −0.0491 −0.0235 −0.0053 −0.1972 0.0855
f×d −0.0001 −0.2189 −0.5801 −0.6158 −0.0065 −0.6194 −0.3507
S 0.0037 0.3577 0.8168 0.7749 0.0113 0.9002 0.4832
R-Sq(adj) 95.98% 58.72% 70.00% 72.11% 92.15% 82.65% 15.50%
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Step 6. Principal Component Analysis

Although the responses are extremely and positively correlated,
the solution that minimizes a specific MSE is not capable of minimiz-
ing the others. It can be observed in Table 9 that the solutions are

quite different. In this work, bias is calculated as ∑
p

i=1
MSEi−MSETj j.
(a)

0,000

0,025

-2

0
1

-1

0,050

0,075

0
-1

-2

1

fVc

Fig. 6. Surface plots for (a
To consider the correlation among severalMSEi and to promote an ag-
glutination objective function of these mean square error equations,
the PCA algorithm must be driven. In this work, it was used the mul-
tivariate package available in the Minitab ® 15.0. The results of this
multivariate factorization (Eigenanalysis) are shown in the Table 9.

From Table 9, we can observe that the first two principal compo-
nents represent 99.0% of the variance of the all MSEi with respective
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Table 8
Individual optimization results.

MSE1 MSE2 MSE3 MSE4 MSE5 Vc f d Bias

0.001957 0.110286 0.019328 0.001000 0.003922 −1.132 −0.896 −0.461 0.1286
0.004809 0.095941 0.044117 0.001000 0.003872 −0.748 −1.360 −0.649 0.3300
0.005283 0.121449 0.001001 0.001001 0.007108 −0.640 −0.755 −1.273 0.1308
0.004980 0.116888 0.044109 0.001000 0.004791 −0.409 −1.215 −0.815 0.1668
0.002730 0.106169 0.032001 0.001000 0.003088 −0.939 −1.151 −0.511 0.1344
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eigenvalues of λ1=4.672 and λ2=0.276. In practical terms, the prin-
cipal component scores stored in the last two columns of Table 8 (PC1
(MSE); PC2(MSE)) were calculate as:

PCk = ZTE =

y11−y1ffiffiffiffiffi
s11

p
� �

y21−y2ffiffiffiffiffi
s22

p
� �

⋯
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 !
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Step 7. Modeling of PC-scores

The core of multivariate optimization is the transformation of
original correlated responses (MSEi in this case) in uncorrelated prin-
cipal component scores. According to the theory, these components
are capable of replace the original data in a few latent variables. In
the present approach, these values can be used to generate a full qua-
dratic model that replaces all MSE's. The principal component scores
calculated as Eq. 15 are present in the Table 6. Applying the OLS algo-
rithm we obtain the coefficient of principal component scores as de-
scribe in the Table 7.

Step 8. Constrained optimization of PC-scores

Using the relationship ζPCi = ∑
p

i=1
∑
q

j=1
eij Z Yp jζYp


 �� 
and the mini-

mal values of individual optimization of MSEi shown in Table 9, the
principal component targets were calculated as ζPC1

=−2.1652 and
ζPC2

=0.1502. The minimization of the distance between each princi-
pal component and its respective target can lead to a compromise so-
lution that attends the targets of all five correlated responses.
Adopting these aspects and the minimization criteria, a nonlinear
Table 9
Eigenanalysis of the five MSE's.

Eigenvalue 4.67190 0.27630 0.03230 0.01910 0.00040
Proportion 0.93400 0.05500 0.00600 0.00400 0.00000
Cumulative 0.93400 0.99000 0.99600 1.00000 1.00000

Eigenvectors
MSE1 0.431 −0.668 0.410 0.443 0.057
MSE2 0.448 0.414 −0.481 0.623 0.093
MSE3 0.455 0.321 0.334 −0.172 −0.741
MSE4 0.455 0.319 0.348 −0.369 0.659
MSE5 0.447 −0.421 −0.606 −0.500 −0.065
optimization system may be written in terms of the multivariate
mean square error using, additionally, a spherical constraint to the
factor levels. This constraint (ρ2=2.667) will force the solution to
fall within the experimental region. Gathering the previous informa-
tion in a comprehensive optimization system, it is possible to write
the following expressions:

Minimize MMSET =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PC1− ζPC1

� � 2
+ λ1

� �
× PC2− ζPC2

� � 2
+ λ2

� �s

ð16Þ

Subject to : xTx≤ ρ2 = Vc2 + f 2 + d2≤ 2:667 ð17Þ

With ζPCi
= e1i Z MSE1 jζMSE1

� �h i
+ e2i Z MSE2 jζMSE2

� �h i
+ e3i Z MSE3 jζMSE3

� �h i
+ + e4i Z MSE4 jζMSE4

� �h i
+ e5i Z MSE5 jζMSE5

� �h i
ð18Þ

PCi = b0i + ∇f xð ÞT
h i

i
+

1
2
xT ∇2f xð Þ
h i

x
� 	

i

i = 1;2;…;p:

ð19Þ

where: x = Vc; f ; d½ �. The numerical values of the standardized tar-
gets Z(MSEi|ζMSEi) were cited in the penultimate line of Table 6. The
numerical values of eigenvectors eij for Eq. (18) are described in
eigenanalysis of Table 9.

Step 9. Generalized Reduced Gradient

Using the GRG Solver® routine available in the Excel package
again, we obtain the results available in the Table 10. Method “I” rep-
resents the solution obtained with only one principal component
score regression, while in the Method “II” we use two components.

Fig. 7 shows the optimal solution found with MRPD in coded units.
It is possible to verify that this solution (−1.005; −1.087; −0.469)
attends all the constraint values imposed to the individual value of
MSE. In uncoded units, this solution is Vc=199.9 m/min,
f=0.191 mm/rev and d=0.190 mm. It can be noticed that employing
the MRPD approach, the bias is extremely reduced, indicating that the
algorithm achieved an optimumwhich represents a compromise solu-
tion for means and variances, keeping the responses as close as possi-
ble from their targets. It can also be noticed that this is also different
from that obtained in the individual constrained optimization.

The physical sense of the aforementioned results should be dis-
cussed to verify its consistence and for the better understanding
and application of the methodology by researchers in machining or
other manufacturing systems. Surface roughness is the greatness
that quantifies the degree of workpiece finish. It is directly related



Table 10
MMSE optimization results.

Method MSE1 MSE2 MSE3 MSE4 MSE5 Vc f d

I 0.00201 0.11017 0.02082 0.00100 0.00359 −1.052 −0.934 −0.518
II 0.00236 0.10843 0.02883 0.00100 0.00316 −1.005 −1.087 −0.469

Method Ra Rz Rt Ry Rq Vc f d
I 0.237 1.365 1.563 1.518 0.298 199.0 0.207 0.186
II 0.228 1.312 1.507 1.460 0.285 199.9 0.191 0.190

Method Var (Ra) Var (Rz) Var (Rt) Var (Ry) Var (Rq) Method Bias
I 0.003 0.1147 0.1609 0.1240 0.0050 I 0.03461
II 0.004 0.1435 0.1890 0.1456 0.0062 II 0.04080
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to the tool geometry and machining parameters. Increasing radius of
the tool tip, for example, tends to reduce roughness. This occurs into a
certain limit, because increase in radius can cause vibrations, which
contributes to worsen the finish. The feed rate is also a variable that
directly influences the theoretical value of roughness, since the smal-
ler is its value, the less likely will be the marks left on the workpiece
surface by the passage of the tool. In practice, however, the surface
finish is still influenced by the rake angle, the tool wear and the rigid-
ity of the fixation system workpiece-tool. Apart from issues related to
the cutting geometry, surface finish is little influenced by cutting
speed.

Comparatively in hard turning, the influence of depth of cut is
greater than the observed with the increase of cutting speed. When
depth of cut is increased a greater capacity of material removal
through the use of a greater portion of the cutting edge will be ob-
served, but provoke increase of the thrust force and of the workpiece
vibration and consequently worsen of the surface roughness. There-
fore, considering the physical consequences of the optimized setup
obtained with MRPD approach, we believe that Vc=199.9 m/min,
f=0.191 mm/rev and d=0.190 mm is an adequate setup for the sur-
face finish operation of AISI 52100 hardened steel turned workpieces.
Table 11
Sensitivity analysis and comparison.

Tool geometry Method MRR Ra Vc f d

Conventional Paiva et al. (2009) 6.43 0.400 217.7 0.080 0.340
Wiper Proposed method (II) 7.34 0.228 199.9 0.191 0.190

g1(x) 8.0 0.243 197.0 0.216 0.186
g2(x) 9.0 0.245 193.9 0.219 0.211

Wiper g3(x) 10.0 0.253 194.0 0.227 0.227
4. A comparative study

To compare the performance of wiper mixed ceramic tool
obtained in this study and that obtained with conventional geometry
tool, we will use the data present in [7]. In Paiva et al. [7], also using
the MMSE method and a mixed ceramic tool (Al2O3+TiC), ISO
Vc
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Fig. 7. Overlaid contour plot for each MSE.
code CNGA 120408 S01525 (Sandvik-Coromant CC6050) with con-
ventional geometry, an average surface roughness Ra=0.40 was
reached, with a respective material removal rate of 6.43 cm3/s in
the turning process of AISI 52100 hardened steel (53–55 HRC).
These values were obtained with a cutting speed of 217.7 m/min,
feed rate of 0.086 mm/rev and depth of cut of 0.342 mm. Table 11
shows that with wiper ceramic inserts in the machining of the same
material, it can be used a feed rate more than twice larger than that
achieved with conventional tool geometry and reached a lower sur-
face roughness (Ra=0.228). Besides, the productivity obtained with
wiper ceramic tools are higher than the values obtained with conven-
tional ones (MRR=7.43 cm3/s).

Differently from the results with conventional geometry, the level
of depth of cut was lower with wiper inserts. Since there is a relation-
ship betweenmachining force and the increase in the contact area be-
tween tool and workpiece furnished by the high values of depth of cut
and feed rate. In the wiper case, it can be expected a lower wear rate,
since the cutting forces have smaller growth than those obtained with
g4(x) 12.0 0.270 201.5 0.240 0.270
g5(x) 15.0 0.276 211.3 0.242 0.295
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Table 12
Predicted versus real values of surface roughness at optimum.

Ra Rz Rt Ry Rq

Predicted mean 0.228 1.312 1.507 1.460 0.285
Real mean 0.227 1.340 1.215 1.377 0.276
Predicted S.D. 0.063 0.379 0.435 0.382 0.079
Real S. D. 0.050 0.359 0.288 0.369 0.061
Q1 0.190 1.053 0.980 1.080 0.230
Median 0.220 1.310 1.180 1.315 0.260
Q3 0.260 1.580 1.420 1.705 0.320

Table 13
Anova one-way: Ra versus noise condition.

Source DF SS MS F P-Value

Noise 3 0.315893 0.105298 120.66 0.000
Error 188 0.164069 0.000873
Total 191 0.479962

Level N Mean StDev
New Tool (40 HRC) 48 0.29104 0.02890
New Tool (50 HRC) 48 0.22938 0.02794
Used Tool (40 HRC) 48 0.20396 0.02893
Used Tool (50 HRC) 48 0.18292 0.03222
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conventional inserts. As a sensitivity study, we added a new con-
straint to the optimization problem related to the material removal
rate. As the surface roughness is very small, we forced the solution
to higher values of MRR, observing the variation of Ra, for example.
Even doubling MRR, Ra still presents values considerably low if com-
pared with the value obtained in Paiva et al. [7].

Besides the good results of Ra and MRR, the present work con-
siders the influence of variances raised from noise factors over the
performance of the characteristics of interest. So, using the obtained
results it is possible to simulate and compare the quality of the robust
solution. Fig. 8 presents a simulation of Ra before and after the opti-
mization routine just to emphasize the effectiveness of the obtained
results.

The scenario called “Before”was simulated using normal probability
distribution for Ra with parameters (0.211; 0.114), respectively repre-
senting mean and variance of the smallest value of Ra (corresponding
to experiment no. 11). It can be noticed that the correspondent MRR
is 6.52 cm3/s, obtained with Vc=220 m/min, f=0.132 mm/rev and
d=0.225 mm.

The scenario called “After” represents a normal probability distribu-
tion for Ra under the optimized conditions. It can be verified that the
variance is extremely reduced while Ra achieves values very close to
the smallest value of experimental runs. Besides, the respective MRR
is 12.6% larger (7.34 cm3/s) than the value obtained in the experiment
with the lowest Ra. Experiment no. 11 also presents the large experi-
mental variance for Rz, Rt and Ry, although the minimal values for sur-
face roughness were related to the condition of Vc=200 m/min,
f=0.20 mm/rev and d=0.15 mm (Experiment no. 1).

This comparison using simulated data shows that the MRPD ap-
proach was effectiveness in the treatment of mean and variance of
multiple correlated responses in this case. A strategy considering
the use of an outer array, formed by a factorial design of the noise fac-
tors was really capable of generate a real source of variation for the
study. We believe that the robust results are closer to the real situa-
tions than those approaches concerned only with the explanation
and optimization of the mean characteristic.
Used Tool (50 HRC)

Used Tool (40 HRC)

New Tool (50 HRC)

New Tool (40 HRC)

0,300,280,260,240,220,200,180,16
Ra

95% CI for the Ra

Fig. 9. ANOVA one-way: Ra versus noise condition.
5. Confirmation runs

To analyze the effectiveness of the optimal setup found with the
MRPD approach and to confirm the findings of the simulation study,
a set of confirmation runs was carried out, turning four workpieces
for each one of the four noise conditions. The five surface roughness
metrics were measured twelve times at the middle of the bars, result-
ing in a dataset of 192 observations of each surface finish state. The
main objective of these confirmation runs was to verify if the surface
roughness variance is minimal with their mean values as close as pos-
sible to the established targets. Table 12 present the ANOVA One-Way
of average surface roughness (Ra) obtained under the four noise
conditions. Fig. 9 shows the 95% confidence intervals for each rough-
ness mean obtained in the four noise conditions.

It is clear that, although the means of surface roughness metrics in
each noise condition are different (P-valueb5%), their means are very
low. This variation observed among the four sample means highlights
that the noise influence was not totally removed from the process
with the optimal setup. Nonetheless, the variances (and the standard
deviation) are notably lower with the optimized solution than with
those observed with the experiment with the lowest value for the
surface roughness. We can also note in the Table 13 that the mean
and the standard deviation for the 192 confirmation runs for each
surface roughness metric were very close to the predicted ones.

Fig. 10 shows a comparison between the experimental (Exp) and
optimal (Opt) data for each response. As can be observed in the box-
plots of this figure, the variances obtained with the optimal setup are
much smaller than those observed with the experimental run no. 11.
Using a 5% significance level, a two sample-t test of hypothesis was
conducted to verify the equality of the means between optimal and
experimental trials.

As shown in the Table 14, for Ra, Rt and Ry, there is an equality be-
tween means (P-ValueN5%), which suggest that the optimization was
capable to reach the values close to the minimal observed. For Rz and
Rq (with P-valuesb5%), however, the optimal setup conducted to
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Fig. 10. Boxplot for comparison of variances of the surface roughness metrics.

image of Fig.�9
image of Fig.�10


Table 14
Hypothesis tests for means and variances.

Response Mean T P-Value S. D. F P-Value Levene P-Value

Ra Opt 0.227 1.540 0.129 0.050 0.360 0.000 54.430 0.000
Exp 0.208 0.083

Rz Opt 1.340 −2.530 0.014 0.359 0.330 0.000 28.150 0.000
Exp 1.579 0.629

Rt Opt 1.215 −1.670 0.101 0.288 0.350 0.000 32.520 0.000
Exp 1.337 0.487

Ry Opt 0.276 0.670 0.506 0.061 0.330 0.000 50.830 0.000
Exp 0.265 0.106

Rq Opt 1.377 −2.730 0.009 0.369 0.330 0.000 30.420 0.000
Exp 1.640 0.642
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smaller values for means than those seen at the experimental run.
This test was used because the variances of each sample or level (ex-
perimental versus optimal) were not homogeneous. Accordingly,
Table 14 also presents a test of hypothesis to verify the equality of
variance in these cases. Considering a F-test (for normal distribu-
tions) or even a Levene test (for any continuous distribution), we ob-
served that all p-values were smaller than the significance level,
which indicates that the variances are statistically different, as was
suggested by the boxplots of Fig. 10.

6. Conclusions

On the basis of the results presented, the following conclusions
can be drawn:

1. The process optimization based on the Multivariate Robust Param-
eter Design approach (MRPD) in situations where the multiple re-
sponses exhibit a moderate to high degree of correlation, showed a
consistent adequacy applied to the hard turning of AISI 52100 with
wiper mixed ceramic tools.

2. The results and confirmatory runs allowed to state that MRPD ap-
proach outperforms the individual optimization routines, with
minimal variance for each surface roughness parameter. The bias
of each response is also extremely reduced with MRPD approach,
indicating that the algorithm achieved an optimum which repre-
sents a compromise solution for means and variances, keeping
the responses as close as possible from their targets.

3. In the turning process of AISI 52100 with wiper mixed ceramic
tools, the first principal component was responsible for most of
the variance–covariance present in the original data associated
with the five surface roughness metrics. The second principal com-
ponent was used as an alternative to improve the explanation of
the surface roughness behavior of the machined parts.

4. Simultaneous optimization of the five responses of AISI 52100 hard
steel turned with wiper mixed ceramic insert was achieved with a
cutting speed of Vc=199.9 m/min, feed rate of f=0.191 mm/rev
and depth of cut of d=0.190 mm.

5. Comparing the presented results with those suggested in the liter-
ature with a conventional geometry for inserts, it was shown that
with wiper inserts it can be used a feed rate more than twice larger
than that achieved with conventional tool geometry, with a surface
roughness that is nearly half (Ra=0.228). Besides, the productivi-
ty obtained with wiper tools are higher than the value obtained
with conventional ones (MRR=7.43 cm3/s). Even relaxing the
constraint associated with the MRR equation, the productivity is
almost twice with low values for surface roughness.

6. For all responses, the values of surface roughness are low and the
variance was extremely reduced.

Although the results are quite adequate, further works may in-
clude studies about the measurement, modeling and interpretation
of the interaction effects that can occur between control and noise
variables. This can be done with a combined array. The present
study can also be extended to other levels of workpiece hardness
and for other insert substrate, as PCBN tools, with wiper and conven-
tional geometry. Even considering the quality of results of the present
approach, these conclusions cannot be extrapolated to different ma-
terials, tools or machine tools and they are valid only in the adopted
range levels. It can, nonetheless, be recommended to be applied in
many other manufacturing processes.
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